
Discussion 8
Author: Zhe Wang



01D Sit with your project group in sections by your 
assigned TA 

Joon Young Samia

Josh/Alex Alexandra

Zach Harris

Joyce Danny

Front of Classroom 



02D Sit with your project group in sections by your 
assigned TA 

Jason Samy

Josh/Alex Neel

Han Justin

Samia Konstantinos

Front of Classroom 



MVC Architecture
- Model

The central component of the pattern. It is the application's dynamic 
data structure, independent of the user interface. It directly manages the 
data, logic and rules of the application.

- View
Any representation of information such as a chart, diagram or table 
or web UI. 

- Controller
Accepts input and converts it to commands for the model or view.

https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller


Controller
● Backend Endpoint

○ Handling parsing HTTP 
requests send from 
frontend

○ Translate requests to SQL 
query

○ Send SQL query via 
connector

○ Translating database 
records to Data Access 
Objects (DAOs) (Python 
Objects)

○ Returning HTTP response 
response



View

● Web UI
● Could be separate frontend like 

React, Vue.js, Angular or could be 
server side rendering returning 
HTML to browser to render such as 
Django

● Flask provides server side 
rendering with render_template that 
takes in Jinja template with context 
variables then returns a rendered 
HTML wrapped in HTTP Response

https://jinja.palletsprojects.com/en/3.1.x/templates/


Model

● Usually represented by 
classes or objects 
depending on language

● Containing different 
methods for different 
business needs

● Translate between 
database table rows

● provides an abstract 
interface to some type of 
database or other 
persistence mechanism



SQLAlchemy

● SQL Connector and Object 
Relational Mapper (ORM)

● Open up connection to PostgreSQL
○ Execute SQL Query
○ Return Database Records
○ Map Database Records to Python 

Classes/Objects



Demo: A walk thru of an example project

- How to create table and load data
- Where is Model
- Where is Controller

- What is FlaskForm (flask-wtf)
- What is API Endpoint, URL Route Registration
- What is render_template

- Where is view
- Jinja template

https://flask-wtf.readthedocs.io/en/1.0.x/quickstart/#creating-forms
https://flask.palletsprojects.com/en/2.2.x/api/#url-route-registrations
https://flask.palletsprojects.com/en/2.2.x/api/#flask.render_template
https://jinja.palletsprojects.com/en/3.1.x/templates/


How does Flask 
Form Work?

- First, create a form class 
extending FlaskForm base 
class provided by flask_wtf

- Add necessary form 
fields using classes 
from wtforms under 
the class

- Then in HTML template, 
insert a form tag block with 
jinja code block

- Add all necessary 
fields and submit 
button if necessary

- Finally in the backend 
endpoint controller function, 
instantiate a new instance of 
the form then validate input 
and perform other logics with 
data parsed from the form



How does HTTP work?

- The HTTP route for a service is the publicly-accessible directory path that 
maps to the root of your service. (xxxx.com/abc/1/0)

- HTTP Request has different type: GET, POST, PUT, PATCH, and DELETE
- The browser sends HTTP requests to the flask backend
- The flask backend sends HTTP response wrapping rendered HTML to the 

browser



How to define endpoint route in Flask

- Use @app.route or 
blueprint.route

- <param_name> for 
parameter called 
param_name

- <int:param_name> for 
enforcing parameter type

- Blueprint is used for 
grouping related 
requests/resources



What you need to implement end to end?

- Add new table in create.sql and load.sql for loading fake data
- Add new model under app/models/xxx.py (Example: app/models/user.py)
- Add new static method under the model class for each SQL query (Example: 

app/models/user.py::get (L92)
- Add new backend endpoint controller under app/xxx.py (Example: 

app/users.py::Login (L23)
- Add new HTML Jinja template under app/templates/xxx.html (Example: 

app/templates/login.html


